# ОПРЕДЕЛЕНИЕ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ СВОБОДНО ПАДАЮЩИХ МОНЕТ

## А. С. Ахмедов, М. В. Гордиенко, А. И. Чадаев, В. С. Афонин

Алтайский государственный технический университет имени И.И. Ползунова, г. Барнаул

Показаны возможности применения емкостного преобразователя (ЕП) для определения размеров свободно падающих монет. Приведено устройство макета монетоприемника и описание проведенного эксперимента. Результаты проведенных работ по определению диаметров монет показали возможность использования ЕП для устройства монетоприемника.

**Ключевые слова:** определения геометрических размеров, емкостный датчик, монетоприемник, измерительная схема.

#### Введение

Задачи определения геометрических размеров твердотельных частиц в разных сферах приведены в источниках [1-3]. Достаточно часто для решения таких задач применяют оптические методы, обладающие множеством достоинств, но и требующие в реализации довольно сложные и дорогостоящие элементы. Геометрические размеры частиц можно косвенно определять емкостным датчиком. Задача по определению достоинства монеты по ее геометрическим размерам является в достаточной степени актуальной, т.к. системы самообслуживания применяются по-Благодаря монетоприемникам всеместно. возможна покупка многих товаров без участия владельца товара, что очень упрощает любой вид деятельности. Такие устройства с поморегистрируют датчика магнитный/электромагнитный "отклик", сравнивают его параметры с эталонными образами, и определяют номинал монеты.

**Цель работы** – оценить возможность применения емкостного датчика в устройстве монетоприемника.

Один из вариантов организации идентификатора монет на основе индуктивного датчика приведен на рисунке 1. Входные импульсы генератора поступают на делитель частоты, с выхода которого импульсы низкой частоты запускают формирователь импульсов тока. Импульсы тока преобразуются катушкой индуктивности в магнитное поле, которое воздействует на монету, перемещающуюся по монетопроводу [4]. Под воздействием магнитного поля в монете возникают вихревые токи, магнитное поле которых наводит в двух съемных катушках, включенных встречно, импульсы тока. Величина и

длительность импульсов являются функцией от материала и положения монеты. Импульсы с выхода катушек поступают на счетчик импульсов и на широтно—импульсный детектор. Количество импульсов на выходе счетчика характеризует диаметр монеты, а ширина импульса на выходе детектора тип материала монеты. Указанные величины поступают на входы исполнительного блока, который управляет работой устройства.



Рисунок 1 – Схема устройства индуктивного монетоприемника

По аналогии с индуктивным и оптическим датчиками, емкостный датчик формирует чувствительную область, размеры которой зависят от размеров и геометрического расположения электродов. Попадая в эту область, монета формирует соответствующий сигнал. Очевидно, что формируемый сигнал будет зависеть от времени, проведенном монетой в чувствительной зоне ЕП. А время, в

## ОПРЕДЕЛЕНИЕ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ СВОБОДНО ПАДАЮЩИХ МОНЕТ

свою очередь, связано с геометрическими размерами монеты.

ЕП включает в себя три электрода: потенциальный, измерительный и электрод с нулевым потенциалом (Рисунок 2). ЕП внедряется в монетопровод, который может быть выполнен в виде полой трубы, в которой под собственным весом перемещается монета. Для устранения электрического контакта между монетой и электродами, последние вынесены на наружную стенку трубы. Вокруг электродов был закреплен экран, для снижения внешних наводок.

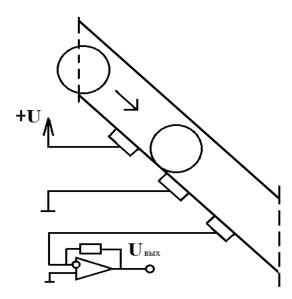



Рисунок 2 – Испытательный макет емкостного монетоприемника

Присутствие монеты в монетоприменике приводит к изменению электрической емкости и генерированию токового сигнала, который преобразуется в напряжение соответствующим преобразователем. С помощью полученного макета необходимо получить зависимость выходного параметра от размера и материала измеряемой монеты. Для проведения эксперимента требуются регистрирующее устройство и источник опорного напряжения для питания ЕП. Для регистрации сигналов был использован внешний модуль АЦП Е14-440 и персональный компьютер со специальным программным обеспечением PowerGraph. Данное ПО позволяет проводить запись сигналов для дальнейшего воспроизведения и проведения анализа. Для работы в PowerGraph через внешний модуль E14-440 была скачена и установлена библиотека с драйверами LComp.

#### Результат эксперимента

Скатывания монет осуществлялись под определенным углом, монеты начинали движение из состояния покоя. Неизменные vсловия обеспечивали идентичные траектории скорости движения. Генерируемый процессе сигнал R перемещения монеты в монетопроводе представлен на рисунке 3.

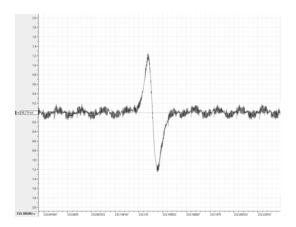



Рисунок 3 – Форма сигнала ЕП в ПО PowerGraph

Экстремумы на графике соответствуют прохождению монеты напротив потенциального и измерительного электрода. Следовательно, расстояние между ними и является основным информационным параметром.

Было выполнено по 10 бросков 4-х номиналов монет, зафиксировано время прохождения монеты, рассчитаны усредненные данные и занесены в таблицу 1. При попадании монеты в электрическое поле каждый сигнал отличался по продолжительности. Время прохождения монеты измеряли от минимума до максимума сигнала.

По данным эксперимента можно утверждать что длительность сигнала каждого номинала монеты коррелируют с ее размерами (таблица 1).

Таблица 1 – Экспериментальные данные

| Номинал монеты | Ср знач t, мс | Коэффициент<br>корреляции<br>Пирсона |
|----------------|---------------|--------------------------------------|
| 10 рублей      | 11,11         | 0,904                                |
| 5 рублей       | 16,33         |                                      |
| 2 рубля        | 12,33         |                                      |
| 1 рубль        | 9,76          |                                      |

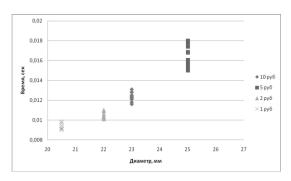



Рисунок 4 – Результаты эксперимента

На рисунке 4 представлена графическая картина результатов эксперимента, по которой можно видеть разброс показаний при повторных измерениях.

### СПИСОК ЛИТЕРАТУРЫ

- 1. Кирин, Д.Ю. Определение геометрических размеров частиц окомкованного материала / Д.Ю. Кирин. Текст непосредственный // Горный информационно—аналитический бюллетень (научно—технический журнал). 2011. № 12. С. 160—164.
- 2. Паутова, А.С. Информационно измерительная система определения линейных размеров твердых частиц, присутствующих в составе транспортируемой нефти / А.С. Паутова. Текст непосредственный // Современные инструментальные системы, информационные технологии и инновации : сборник научных трудов XI—ой Международной науч-

но-данныхпрактической конференции: в 4-х томах, Курск, 19-21 марта 2014 года / Ответственный редактор Горохов А.А.. – Курск: Закрытое акционерное общество "Университетская книга", 2014. – С. 253-257.

- 3. Определение состава осадка, выхода меди и размера частиц меди, полученных гидрокарбонильным методом / В. В. Максимов, Т.С. Николаева, А.А. Матеров, Э.Э. Мирзоев. Текст непосредственный // Химия в нехимическом вузе: материалы Третьей Всероссийской конференции, Москва, 10–12 сентября 2015 года. Москва: Издательский Дом "Академия Естествознания", 2016. С. 139–143.
- 4. Конюхов, Н.Е. Электромагнитные датчики механических величин / Н.Е. Конюхов, Ф.М. Медников, М.Л. Нечаевский. М.: Машиностроение, 1987. 254 с.— Текст непосредственный.

**Ахмедов Арабжон Салимжонович** – студент факультета информационных технологий АлтГТУ им. И.И. Ползунова;

Гордиенко Мария Владимировна — студентка факультета специальных технологий АлтГТУ им. И.И. Ползунова;

**Чадаев Александр Игоревич** – магистрант факультета информационных технологий АлтГТУ им. И.И. Ползунова, е-mail: alexander.chad @yandex.ru, тел.: 89627979416;

**Афонин Вячеслав Сергеевич** — к.т.н., доцент каф. ИТ АлтГТУ им. И.И. Ползунова, e-mail: Afonin\_vs @mail.ru.